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A cohomological nonabelian Hodge theorem

in positive characteristic

Mark Andrea de Cataldo and Siqing Zhang

Abstract

By using specialization in cohomology techniques, under suitable natural coprimal-
ity conditions, we prove a cohomological Simpson correspondence between the moduli
space of Higgs bundles and that of connections on a curve over an algebraically closed
ground field of positive characteristic p > 0. We also prove a new p-multiplicative
periodicity concerning the cohomology rings of Dolbeault moduli spaces of degrees
differing by a factor of p. By coupling this p-periodicity in characteristic p with lift-
ing/specialization techniques in mixed characteristic, we find, in arbitrary characteris-
tic, cohomology ring isomorphisms between the cohomology rings of Dolbeault moduli
spaces for different degrees coprime to the rank. Interestingly, this last result is proved
by passing from positive characteristic to characteristic zero and back. The moduli
spaces we work with admit certain natural morphisms, and all the cohomology ring
isomorphisms we find are filtered isomorphisms for the resulting perverse Leray filtra-
tions.

1. Introduction

Let C be a connected projective nonsingular curve over the complex numbers. The nonabelian
Hodge theorem (a.k.a. the Simpson correspondence) [Sim94a, Sim94b] establishes that three
rather different moduli spaces are canonically homeomorphic to one another: the de Rham moduli
space MdR of rank r connections on C, the Dolbeault moduli space MDol of rank r and degree
zero Higgs bundles on C and the Betti moduli space MB of representations of the fundamental
group of C into GL(r,C). There is also the Hodge moduli space MHod of t-connections [Sim97]
that in some sense subsumes MDol and MdR. For the variant concerning nonsingular moduli for
bundles of (nonzero) degree coprime to the rank, see [HT04]. For a brief summary concerning
the Hodge, Dolbeault and de Rham moduli spaces, see § 1.3.

In this paper, we also work over an algebraically closed ground field of positive characteristic,
where, even though many beautiful results are available, the situation is less clear. Since there
seems to be no Betti picture that fits well with a possible Simpson correspondence, in this paper,
by Simpson correspondence in characteristic p > 0, we mean some kind of relation between Higgs
bundles (Dolbeault picture) and connections (de Rham picture).
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A. Ogus and V. Vologodsky [OV07, § 4] establish, among other things, a Simpson correspon-
dence between the stack of Higgs bundles with nilpotent Higgs field for the Frobenius twist
C(1) of the curve C and the stack of connections on the curve C with nilpotent p-curvature
tensor. M. Groechenig [Gro16, Theorem 3.29, Lemma 3.46] proves that there is a pair of mor-
phisms MDol

(
C(1)

)
→ A

(
C(1)

)
←MdR(C) that are étale-locally equivalent over the Hitchin base

A
(
C(1)

)
(§ 1.3), both for the coarse moduli spaces and for the stacks. T.-H. Chen and X. Zhu

[CZ15, Theorem 1.2] prove an analogous result at the stack level, for arbitrary reductive groups
in place of the general linear group. The reader can also consult [LSZ19] for generalizations of the
isomorphism in [OV07] to the study of Higgs–de Rham flows for schemes in positive and mixed
characteristic. One recovers the aforementioned nilpotent Simpson correspondence in character-
istic p > 0 in [OV07], by taking the fibers of the pair of morphisms over the origin in A

(
C(1)

)
.

More generally, we get a kind of Simpson correspondence: for every closed point in A
(
C(1)

)
, the

two fibers of the morphisms MDol

(
C(1)

)
→ A

(
C(1)

)
← MdR(C) are noncanonically isomorphic

varieties and thus have isomorphic étale cohomology rings. Note that these results relate Higgs
bundles of degree d on C(1) to connections of degree dp on C.

None of these results seems to imply a global statement concerning (the cohomology of)
the Dolbeault and the de Rham moduli spaces. In short, it seems that we are still missing
a (cohomological) global Simpson correspondence in positive characteristic.

In this paper, we prove such a new cohomological Simpson correspondence result for curves
over an algebraically closed field of positive characteristic p > 0, as well as a series of new allied
results in arbitrary characteristics. The methods we use center on the use of vanishing cycles
and of the specialization morphism in equal and in mixed characteristic. In order to use these
techniques, we need to establish the smoothness of certain morphisms and the properness of
certain other morphisms. Once this is done, we still need to come to terms with the fact that the
specialization morphisms may fail to be defined because the moduli spaces we work with are not
proper over the ground field. While this issue is circumvented in the proofs of the results in § 2,
it is not in the proofs of the results in § 3, where we use the compactification results of [dCZ22]
and their application to specialization morphisms.

Let us describe the main results of this paper. First of all, all the cohomology rings we
deal with carry natural filtrations, called perverse Leray filtrations, associated with the various
morphisms—Hitchin, de Rham–Hitchin, Hodge–Hitchin (§ 1.3)—exiting these moduli space. In
what follows, we omit these filtrations from the notation.

Let C/k be a nonsingular connected projective curve over an algebraically closed field of
characteristic p > 0. Let ` be a prime, invertible in the ground field. Since the rank is fixed in
what follows, we drop it from the notation.

Theorem 2.1 (Cohomological Simpson correspondence, char(k) = p > 0, I ) and its refinement
Theorem 3.6 (Cohomological Simpson correspondence, char(k)=p>0, II ). Let p > 0. We work
under natural assumptions on the rank r and degree d of the vector bundles involved and on
the characteristic p: namely, d = dp is a multiple of the characteristic, and gcd(r, d) = 1. Note
that then gcd(r, p) = 1. The first condition is to have nonempty de Rham space/stack; the
second one is to have nonsingular moduli spaces. Then we prove that there is a canonical filtered
isomorphism between the corresponding étale cohomology rings

H∗
(
MDol(C; d),Q`

)
' H∗

(
MdR(C; d),Q`

)
. (1)

Unlike [OV07, CZ15, Gro16], equation (1) relates the étale cohomology rings of the Dolbeault
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and de Rham moduli spaces for the same curve C and the same degree. While the Frobenius
twist C(1) does not appear in the statement of (1), it plays a key role in the proof.

Theorem 2.4 (The cohomology ring of NdR). Let p > 0, and assume the same conditions on r
and d seen above: d = dp and gcd(r, d) = 1. We use (22) from the proof of Theorem 2.1 to prove
that there is a canonical filtered isomorphism of cohomology rings

H∗
(
MdR(C; d),Q`

)
' H∗

(
NdR(C; d),Q`

)
, (2)

where NdR is the subspace of stable connection with nilpotent p-curvature, that is, the fiber over
the origin of the de Rham–Hitchin morphism hdR : MdR → A

(
C(1)

)
(see § 1.3). The correspond-

ing fact for MDol and the fiber NDol is well known and valid without any assumptions on rank
and degree, and it can be proved by using the theory of weights jointly with the classical con-
tracting Gm-action on the Gm-equivariant and proper Hitchin morphism hDol : MDol → A(C).
The surprising aspect of (2) is that there is no known Gm-action on MdR.

Theorem 2.5 (p-Multiplicative periodicity with Frobenius twists). Let p > 0, and assume the
same conditions on r and d seen above: d = dp and gcd(r, d) = 1. This theorem expresses a
new periodicity feature concerning the cohomology rings of Dolbeault moduli spaces for degrees
that differ by a multiple a power of the characteristic p > 0; namely, there is a canonical filtered
isomorphism of cohomology rings

H∗
(
MDol(C; d),Q`

)
' H∗

(
MDol

(
C(−m); dpm

)
,Q`
)
, (3)

where m > 0 and C(−m) is the (−m)th Frobenius twist of C, that is, the base change of C/k
via the mth power fr−mk : k

∼→ k, a 7→ ap
−m

, of the inverse of the absolute Frobenius automor-
phism frk.

Theorem 3.9 (Different curves, same degree). Let p > 0, and let gcd(r, d) = 1. We do not
assume that the degree is a multiple of p. We prove that the cohomology rings of the Dolbeault
moduli spaces of two curves Ci of the same genus are noncanonically filtered isomorphic:

H∗(MDol(C1; d)) ' H∗(MDol(C2; d)) .

Over the complex numbers, the statement without the filtrations is an easy consequence of the
fact that the two Dolbeault moduli spaces are diffeomorphic to the (common) Betti moduli space;
the filtered statement is proved in [dCM20].

Theorem 3.11 (p-Multiplicative periodicity without Frobenius twists). Let p > 0, and assume
the same conditions on r and d seen above: d = dp and gcd(r, d) = 1. We prove a noncanonical
analog of (3), with the Frobenius twist C(−m) replaced by the original curve C (or, in fact, by
any curve of the same genus, in view of Theorem 3.9):

H∗
(
MDol

(
C; d

)
,Q`
)
' H∗

(
MDol

(
C; dpm

)
,Q`
)
. (4)

Theorem 3.12 (Same curve, different degrees; char(k) = 0). Here, p = 0. Let d, d′ be degrees
coprime to the rank r. We prove that the cohomology rings of the Dolbeault moduli spaces in
degrees d, d′ for a curve C are filtered isomorphic:

H∗
(
MDol(C, d),Q`

)
' H∗

(
MDol(C, d

′),Q`
)
. (5)
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Over the complex numbers, the statement without the filtrations is a consequence of the fact
that the two Dolbeault moduli spaces are diffeomorphic to their Betti counterparts and that, in
turn, these are Galois-conjugate. The resulting “transcendental” isomorphism differs from the
isomorphism in Theorem 3.12. Presently, it is not known how to compare the perverse Leray
filtrations under the “transcendental” isomorphism. Added in revision: 1) This comparison is
the subject of [dCMSZ21]: the two match. 2) In the recent paper by T. Kinjo and N. Koseki
[KK21, Theorem 1.1], an isomorphism of the form (5) is obtained by a method that differs from
ours.

Theorem 3.13 (Same curve, different degrees; char(k) = p > 0). Here, p > 0. Let d, d′ be degrees
coprime to the rank r and assume p > r. Then we prove the statement analogous to Theorem 3.12.

We want to emphasize the following amusing fact: Theorem 3.11 (a result in positive charac-
teristic) is used to prove Theorem 3.12 (a result in characteristic zero); in turn, this latter result
is used to prove Theorem 3.13 (a result in positive characteristic).

1.1 Notation and preliminaries

The schemes we work with. We fix a base ring J that is either a field or a discrete valuation
ring (DVR), possibly of mixed characteristic (0, p > 0). We work with separated schemes of finite
type over J and with J-morphisms that are separated and of finite type. The term variety is
reserved to schemes as above when the base is a field.

Constructible derived categories and perverse t-structures over the DVR. Let ` be a prime
number invertible in J . We employ the usual formalism of the corresponding “derived” cate-
gories Db

c

(
−,Q`

)
of bounded constructible “complexes” of Q`-adic sheaves endowed with the

appropriate version of the middle perversity t-structure: the classical one if J is a field and the
rectified one if J is a DVR as above. When working over a field with the usual six functors
and the perverse t-structure, the references [Eke90, Theorem 6.3] and [BBD82] are sufficient
for our purposes. When working over a DVR as above, we need to complement these refer-
ences so that we can work with nearby/vanishing cycles functors and their t-exactness properties
for the rectified perverse t-structure. For a discussion and additional references, see [dCZ22,
§ 5.2].

The perverse Leray filtration. Étale cohomology groups are taken only for varieties over alge-
braically closed fields J = k. More often than not, we drop “étale.” Let f : X → Y be a k-
morphism, and let K ∈ Db

c

(
X,Q`

)
. We denote the functor Rf∗ simply by f∗; the derived direct

images are denoted by R•f∗, for • ∈ Z. We denote the perverse truncation functors by pτ6•, for

• ∈ Z. The increasing perverse Leray filtration P f• on H?(X,K) is defined by setting, for every
•, ? ∈ Z,

P f• H
?(X,K) := Im{H?(Y, pτ6•Rf∗K)→ H?(Y,Rf∗K) = H?(X,K)} . (6)

Let f : X → Y and g : Y → Z be morphisms of k-varieties. If g is finite, then g∗ is t-exact (hence,
being cohomological, exact on the category of perverse sheaves), so that

P g◦f• H?(X,K) = P f• H
?(X,K) . (7)

Étale cohomology rings. When working with separated schemes of finite type (varieties) over
an algebraically closed field k of positive characteristic p > 0, we fix any other prime ` 6= p.
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The graded étale cohomology groups H∗
(
−,Q`

)
of such a variety form a unital, associative,

graded-commutative Q`-algebra for the cup product operation. A graded morphism between
the graded étale cohomology groups of two varieties preserving these structures is simply called
a morphism of cohomology rings. Of course, pull-backs via morphisms are examples. In this
paper, we find isomorphisms of cohomology rings, with additional compatibilities, that do not
arise from morphisms.

1.2 Background on vanishing/nearby cycles and specialization in cohomology

We briefly recall the general setup for the formalism of nearby-vanishing cycles using strictly
Henselian traits; see [DRR+72, Ill94] and [Eke90, § 6, Remark, p. 214]. Caveat: There are several
distinct and all well-established ways to denote nearby/vanishing cycles in the literature. Our
notation φ for the vanishing cycle differs by a shift (our φ[1] is their φ) with respect to the given
references. Our current notation makes φ and ψ[−1] t-exact functors, and is in accordance with
[dCa22, dCZ22], as well as with other occurrences in the literature.

Strictly Henselian traits. Let (S, s, η, η) be a strictly Henselian trait together with a minimal
choice of generic geometric point; that is,

(i) S is the spectrum of a strictly Henselian DVR, hence with separably closed residue field;

(ii) i : s→ S is the closed point (it is also a geometric point);

(iii)

j̄ : η // η // S (8)

is the generic point of S, with the associated geometric point stemming from a fixed choice
of a separable closure k(η)sep/k(η) of the fraction field of the Henselian ring.

The objects restricted via the base change i : s→ S are denoted by a subscript −s, and similarly
for −η and for −η.

Vanishing/nearby cycles. Let v : X → S be a morphism of finite type. We have the distinguished
triangle of functors

i∗ // ψv // φv[1] // ,

where the three functors are functors Db
c

(
X,Q`

)
→ Db

c

(
Xs,Q`

)
. The functor ψv is called the

nearby cycle functor, and the functor φv is called the vanishing cycle functor. By restricting
to η, we can also view the functor ψv as a functor Db

c(Xη) → Db
c(Xs). If η∗F ' η∗G, then

ψv(F ) ' ψv(G), functorially.

The specialization morphism sp. For F in Db
c(X), we have the fundamental diagram

H∗(Xs, F ) H∗(X,F )
i∗oo η∗ // H(Xη, F ) . (9)

If i∗ is an isomorphism, then we define the specialization morphism by setting

R•v∗i
∗F = H•(Xs, F )

sp:=η∗◦(i∗)−1

// H•(Xη, F ) = H•s(ψvv∗F ) , ∀• ∈ Z .

By the proper base change theorem, if v is proper, then i∗ is an isomorphism and the specialization
morphism is defined. However, it v is not proper, then i∗ may fail to be an isomorphism and the
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specialization morphism may fail to be defined. The paper [dCa22] is devoted to exploring this
phenomenon, and in this paper, we work in such a situation.

Remark 1.1. If the specialization morphism is defined, then it is compatible with cup products,
for example, when F = Q`. More generally, it is compatible with pairings F ′⊗F ′′ → F of objects
in Db

c(X) [Ill94, § 4.3].

Fact 1.2. For the purpose of this paper, the most important properties of the vanishing cycle
functors are:

(i) If v is smooth, then φv
(
Q`
)

= 0; see [DRR+72, Chapter XIII, Reformulation 2.1.5].

(ii) If f : Y → X is a proper morphism, and u : Y → S and fs : Ys → Xs are the resulting
morphisms, then, by proper base change, we have natural isomorphisms φvf∗ = fs,∗φu and
ψvf∗ = fs,∗ψu; see [DRR+72, Chapter XIII, (2.1.7.1)].

The moduli spaces we work with are not proper over their base, so that it is not clear at the
outset that the various specialization morphisms we wish to consider are even defined. In this
context, we prove Proposition 3.4 for use in § 3. On the other hand, in § 2, we circumvent the
direct use of these specialization morphisms; see the proof of Theorem 2.1.

1.3 The moduli spaces we work with

The existence, quasi-projectivity, and uniform (universal in the coprime case when not in char-
acteristic zero) corepresentability of the moduli spaces we are about to introduce have been
established by C. Simpson [Sim94a, Sim94b] for smooth projective families over a base of finite
type over a ground field of characteristic zero, and over a base of finite type over a universally
Japanese ring by A. Langer [Lan14, Theorem 1.1]. Recall that “universal” (respectively, “uni-
form”) refers to the commutation of the formation of the coarse moduli space with arbitrary
(respectively, flat) base change.

Base over base ring. In this paper, we only need to consider the setup of a base B that is
Noetherian and of finite type over a base ring J , that is, either an algebraically closed field k
or a DVR. For a more general setup and more details concerning the moduli spaces we use,
see [dCZ22]. Note that for the sake of the existence of the moduli spaces, the assumption on the
base has been relaxed to B being any Noetherian scheme in A. Langer’s recent paper [Lan21,
Theorem 1.1].

Smooth curves. In this paper, a smooth curve C/B is a smooth projective morphism C → B
with geometric fibers integral of dimension 1. If the base B = J = k is a field, then we often
write C instead of C/k.

Coprimality assumption on rank, degree and characteristic of the ground field. When working
with vector bundles, we denote their rank by r and their degree by d. In this paper, we always
assume that they are coprime; that is, gcd(r, d) = 1. When working with the de Rham moduli
space of stable (= semistable) connections on a smooth curve over an algebraically closed field of
positive characteristic p > 0, we always assume, in addition, that the degree d = dp is an integer
multiple of the characteristic p; otherwise, there are no such connections. Our assumptions imply
that stability coincides with semistability, thus ensuring: 1) the nonsingularity of the Hodge (t-
connections), Dolbeault (Higgs bundles) and de Rham (connections) moduli spaces (cf. § 1.4);
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2) that these moduli universally (instead of merely uniformly) corepresent their moduli functor
[Lan14, Theorem 1.1], so that the formation of such moduli spaces commutes with arbitrary base
change into the moduli space, hence in particular into B or J .

Regrettably, the coprimality assumptions rules out the important case of connections of degree
zero. On the other hand, these assumptions are the most natural when dealing with nonsingu-
lar moduli spaces. While our methods require 1) and 2) above, one wonders if many of the
result of this paper hold without the coprimality assumption, that is, for the possibly singular
Hodge/Dolbeault/de Rham moduli spaces that arise. We are not sure what to expect in the
singular case. Also note that the “p-multiplicative periodicity” results Theorems 2.5 and 3.11
express a property of the Dolbeault moduli spaces that acquires a nontrivial meaning only in
nonzero degrees; the same holds for Theorems 3.12 and 3.13.

The Hodge moduli space. A t-connection on a smooth curve C/B is a triple (t, E,∇t), where t
is a regular function on B, E is a vector bundle on C and ∇t : E → E ⊗OC Ω1

C/B is OB-linear

and satisfies the twisted Leibnitz rule ∇t(fσ) = tdf ⊗σ+f∇t(σ) for every local function f on C
and every local section σ of E on C on the same open subset. There is the quasi-projective B-
scheme MHod(C/B; r, d) (cf. [Lan14, Theorem 1.1]), the coarse Hodge moduli space universally
corepresenting slope stable t-connections of rank r and degree d on the smooth curve C/B. It
comes with a natural B-morphism of finite type to the affine line assigning t to a t-connection

τHod(C/B; r, d) : MHod(C/B; r, d) // A1
B . (10)

Dolbeault moduli space and Hitchin morphism. By the universal corepresentability property, if
we take the fiber over the origin 0B → A1

B, then we obtain the quasi-projective B-scheme

MDol(C/B; r, d) ,

the coarse Dolbeault moduli space universally corepresenting slope stable rank r and degree d
Higgs bundles, twisted by the canonical bundle, on the family of curves C/B. If B is a field, then
the Dolbeault moduli space is empty if and only if the genus of the curve is zero and the rank
r > 2; otherwise, this moduli space is integral, nonsingular and of dimension that depends only
on the rank r and genus g of the curve (cf. [Nit91, § 7]):

dimMDol(C, r, d) = r2(2g − 2) + 2 . (11)

Let A(C/B; r) be the vector bundle on B of rank one half the dimension (11), with fiber
H0(Cb,⊕ri=1ω

⊗i
Cb

). There is the projective and surjective Hitchin B-morphism

hDol(C/B; r, d) : MDol(C/B; r, d) // A(C/B; r) , (12)

assigning to a Higgs bundle the characteristic polynomial of its Higgs field. For the projectivity
of the Hitchin morphism over a base, see [dCZ22, Theorem 2.18].

The Hitchin base. The B-scheme A(C/B; r) is sometimes called the Hitchin base, or the space of
characteristic polynomials of rank r Higgs fields, or the space of degree r spectral curves over C/B.

De Rham moduli space and de Rham–Hitchin morphism. If we take the fiber of (10) over
1B → A1

B, then we obtain the quasi-projective B-scheme

MdR(C/B; r, d) ,
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the coarse de Rham moduli space universally corepresenting slope rank r and degree d stable
connections on the family of curves C/B.

If J = k is an algebraically closed field of characteristic zero, then the de Rham moduli space
is nonempty if and only if d = 0.

If J = k is an algebraically closed field of positive characteristic p, then the de Rham moduli
space is nonempty if and only if d = dp is an integer multiple of p (recall that this is part of
our assumptions on rank, degree and characteristic); see [BS06, Proposition 3.1]. In this case,
it is shown in Lemma 1.4 that the de Rham moduli space is integral, nonsingular, of the same
dimension (11) as the Dolbeault moduli space for the same rank and degree. In this case, we also
have the projective and surjective de Rham–Hitchin B-morphism

hdR
(
C/B; r, dp

)
: MdR

(
C/B; r, dp

)
// A
(
C(B)/B; r

)
,

where C(B)/B is the base change of C/B via the absolute Frobenius endomorphism frB : B → B
(absolute Frobenius for B: identity of topological space; functions raised to the pth power). The
de Rham–Hitchin morphism is defined in [Gro16, Definition 3.16]. It is shown to be proper in
[Gro16, Corollary 3.47], thus projective in view of the quasi-projectivity at the source. For every
closed point b ∈ B, the fiber

(
C(B)/B

)
b

= (Cb)
(1) =: κ(b)×κ(b),frκ(b)C is the Frobenius twist of the

curve C/κ(b), that is, the base change of C/κ(b) via the absolute Frobenius automorphism frκ(b)

of κ(b). The fiber at b ∈ B of the vector bundle A
(
C(B)/B; r

)
is given by ⊕ri=1H

0
(
C

(1)
b , ω⊗i

C
(1)
b

)
.

Hodge–Hitchin morphism (char(k) = p > 0). Let J = k be an algebraically closed field of
positive characteristic p > 0. Y. Lazslo and C. Pauly [LP01] (see also [dCZ22]) have constructed
a natural factorization of the morphism τHod (10)

τHod(C/B; r, d) : MHod(C/B; r, d)
hHod(C/B;r,d)// A

(
X(B)/B; r

)
×B A1

B

pr2 // A1
B . (13)

We call the quasi-projective B-morphism hHod(C/B; r, d) the Hodge–Hitchin morphism. It as-
signs to a t-connection on a curve C the characteristic polynomial of its p-curvature. The p-
curvature is a Higgs field on the same underlying vector bundle on the curve C, but for the pth
power of the canonical line bundle. The key observation is that this characteristic polynomial
is the pull-back via the relative Frobenius morphism FrC : C → C(1) of a uniquely determined
characteristic polynomial on C(1).

If we specialize hHod(C/B; r, d) at 1B, then we obtain the de Rham–Hitchin morphism

hdR(C/B; r, d) := hHod(C/B; r, d)1B : MdR(C/B; r, d) // A
(
X(B)/B; r

)
. (14)

If we specialize hHod(C/B; r, d) at 0B, then we obtain the classical Hitchin morphism post-
composed with the Frobenius relative to B (see [dCZ22])

hHod(C/B; r, d)0B : MDol(C/B; r, d)
hDol(C/B;r,d) // A(C/B; r)

FrA(C/B;r)/B // A
(
X(B)/B; r

)
. (15)

Gm-actions and equivariance. The group scheme Gm,B acts on the Hodge moduli space by
weight 1 dilatation on the t-connections: λ·∇t := ∇λt, and similarly on A1

B. The morphism τ (10)
is Gm,B-equivariant for these actions. Moreover, the pre-image of Gm,B ⊆ A1

B is canonically and
Gm,B-equivariantly a fiber product over B of the de Rham moduli space times Gm,B; that is, we
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have (see [dCZ22])

τ−1(Gm,B) 'MdR(C/B)×B Gm,B . (16)

If J = k is an algebraically closed field of positive characteristic p > 0, then the group
scheme Gm,B acts on A

(
C(B)/B; r

)
×B A1

B: by weight 1 dilations on A1
B and by weight ip

dilations on each term H0
(
C

(1)
b , ω⊗i

C
(1)
b

)
.

If J is arbitrary, then the group scheme Gm,B acts on A(C/B; r)×B A1
B in a similar way, but

by weight i dilations on each term H0
(
Cb, ω

⊗i
Cb

)
.

All the morphisms appearing in (13), (14) and (15) are Gm,B-equivariant for specified actions.
Moreover, the trivialization (16) extends to an evident Gm,B-equivariant trivialization of (13)
over Gm,B ⊆ A1

B, and, in particular, we have a natural Gm,B-equivariant identification

hHod|Gm,B = hdR ×B IdGm,B . (17)

Even without the coprimality assumption, the following properness statement is proved in
[dCZ22, Theorem 2.13(2)], and it can also be seen as a consequence of what is stated in [Lan14,
§ 4.5, top of p. 531]. We thank A. Langer for providing us with a proof in a private communication
(added in revision: A. Langer’s communication now appears in [Lan21, Theorem 1.3]). This
properness result plays an essential role in this paper. An alternative proof of this properness
under our coprimality assumptions is given in Proposition 1.11 which, in turn, is based on the
ad hoc criterion Proposition 1.9.

Theorem 1.3. The Hodge–Hitchin morphism hHod (13) is proper, in fact projective.

1.4 Smoothness of moduli spaces

In this section, we place ourselves in the following special case of the setup in § 1.3: C = C/k is
a smooth curve over an algebraically closed field k of positive characteristic p, the degree d = dp
is an integer multiple of the characteristic and gcd(r, d) = 1.

The aim is to prove Proposition 1.5, to the effect that under these coprimality conditions, the
morphism τHod

(
C; r, dp

)
(10) is smooth. This smoothness is essential to the approach we take in

this paper via vanishing/nearby cycle functors.

Lemma 1.4 (Smoothness of MdR). The moduli space MdR

(
C; r, dp

)
of stable connections is

nonempty, integral, quasi-projective, nonsingular, of the same dimension (11) of the correspond-
ing moduli space MDol

(
C; r, dp

)
of stable Higgs bundles of the same degree and rank. In partic-

ular, the fibers of the morphism τHod

(
C; r, dp

)
(10) over the geometric points of A1

k are integral,
nonsingular of the same dimension (11).

Proof. We drop some decorations. The fiber of τ over the closed point 0 is MDol, and the fibers
over the other closed points are isomorphic to MdR in view of the trivialization (13). We are thus
left with proving the assertions for the fiber MdR.

Let C(1) be the Frobenius twist of the curve C. Note that r and d := d/p are also coprime.
As recalled in § 1.3, the moduli space MDol

(
C(1); r, d

)
is nonempty, integral, quasi-projective

nonsingular of dimension (11). Since its dimension depends only on the genus g(C) = g
(
C(1)

)
of the curve C and on the rank r (cf. [Nit91, Proposition 7.4]), we have that MDol

(
C; r, dp

)
and

MDol

(
C(1); r, d

)
have the same dimension (11).

Let hDol

(
C(1), r, d

)
: MDol

(
C(1), r, d

)
→ A

(
C(1), ωC(1), r

)
be the Hitchin morphism for stable

Higgs bundles for the canonical line bundle on C(1). Since stability and semistability coincide
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by coprimality, this Hitchin morphism is proper [Nit91, Theorem 6.1] and in fact projective
since the domain is quasi-projective. Since the general fiber is connected, being the Jacobian
of a nonsingular spectral curve [BNR89, Proposition 3.6], and the target is nonsingular, hence
normal, this Hitchin morphism has connected fibers [Sta22, 03H0]. Being proper and dominant,
it is also surjective.

Let hdR(C; r, d) : MdR(C; r, d) → A
(
C(1); r

)
be the de Rham–Hitchin morphism for stable

connections on the curve C. This morphism is defined in [Gro16, Definition 3.16, p. 1007].
As seen in § 1.3, it coincides with the specialization at t = 1 of the Hodge–Hitchin morphism
hHod(C; r, d).

By combining [Gro16, Theorem 1.1, Corollary 3.45 and Lemma 3.46], we see that the two
morphisms hDol

(
C(1); r, d

)
and hdR

(
C, r, dp

)
are étale-locally equivalent over the base A

(
C(1); r

)
.

As noted in [Gro16, Corollary 3.47], this étale local equivalence implies that the de Rham–
Hitchin morphism is proper and surjective. In fact, the de Rham–Hitchin morphism is projective
in view of the quasi-projectivity of domain and target.

This étale local equivalence also implies that MdR

(
C; r, dp

)
is nonsingular of pure dimen-

sion dimMDol

(
C(1); r, d

)
= dimMDol(C; r, d) (11). By coupling the étale local equivalence with

the connectedness of the fibers and with the integrality of MDol

(
C(1); r, d

)
, we deduce that

MdR

(
C, dp

)
is integral as well.

Proposition 1.5
(
Smoothness of τHod : MHod → A1

k

)
. The morphism τHod

(
C; r, dp

)
(10) is a

smooth fibration, that is, smooth, surjective, with connected fibers, onto the affine line A1
k. The

Hodge moduli space MHod

(
C; r, dp

)
of stable pairs is integral and nonsingular.

Proof. We drop some decorations. In particular, let us simply write τ : M → A1
k. Since the fibers

of τ are smooth (Lemma 1.4), in order to prove that τ is smooth, it is enough to prove that τ
is flat. Once τ is smooth, the smoothness and integrality of M follow from the flatness of τ and
the smoothness and integrality of the target and of the fibers of τ .

We know that the fibers of τ are nonsingular, integral and of dimension (11) (Lemma 1.4
and (16)). However, off the bat, we are unaware of an evident reason why M should be irreducible,
or even reduced.

We know that τ is flat over Gm,k ⊆ A1
k by virtue of the trivialization (16). We need to verify

that τ is flat over the origin. This is a local question near the origin 0 ∈ A1
k.

Let A := Spec(k[x](x)) (Hitchin bases, typically also denoted by A in this paper, do not
appear in this proof) be the spectrum of the local ring of 0 ∈ A1

k, and let τA : MA → A be the
base change of τ via A→ A1

k. We need to show that MA/A is flat.

The scheme MA universally corepresents suitable equivalence classes of semistable t-connec-
tions on A× C.

Note that τA is surjective, hence dominant. Let 0 and α be the closed and open points in A,
respectively. Let (MA)0 = M0 and (MA)α = Mα be the corresponding fibers.

Claim 1.6. We have Mα ∩ (MA)0 6= ∅.

Proof. Let E be a rank r and degree dp stable vector bundle on C (there are such bundles since
their moduli space is an irreducible nonsingular variety of positive dimension one half of (11)).
The stable bundle E is indecomposable [HL97, Corollary 1.2.8]. By [BS06, Proposition 3.1], the
vector bundle E admits flat connections ∇. Let (E , x∇) be the t-connection on A×C obtained by
pulling back (E,∇) via the projection onto C and by twisting the connection by the function x
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on A. By [HL97, Proposition 1.3.7], we have that E , being stable on the geometric fibers, is
a stable bundle on A×C, so that (E , x∇) is a stable t-connection on A×C. We thus have that
(E , x∇) ∈ M(A). Then (E, (x = 0)∇) = (E, 0) ∈ M(k) is a specialization of the restriction of
(E , x∇) to the generic point of A.

Claim 1.7. We have
(
Mα

)
0

= (MA)0.

Proof. The closure Mα is integral, and it is a closed subscheme of MA. It follows that the first
fiber is a closed (and nonempty by Claim 1.6) subscheme of the integral nonsingular second
fiber. By the upper-semicontinuity of the dimension of fibers at the source, the two fibers have
the same dimension, hence they coincide by the integrality of the second fiber.

Claim 1.8. We have the equality of integral schemes Mα = MA,red.

Proof. The first is a closed and dense (Claim 1.7 implies that they have the same geometric
points) subscheme of the second, which is also integral.

Proof of Proposition 1.5, continued. By [Har77, § III.9.7], we have that MA,red → A and thus
Mred → A1

k are flat.

It remains to show that MA is indeed reduced: Let U be any nonempty affine open subset
of MA. Assume that f ∈ Γ(U,OU ) is a nonzero nilpotent element, so that f maps to 0 ∈
Γ(Ured,OUred

). We have the factorization f = xNg, where g /∈ (x) · Γ(U,OU ). By Claim 1.8,
we have that Ured is integral. Therefore, either x or g is nilpotent in Γ(U,OU ). Since MA → A
is dominant, we have that x is not nilpotent in Γ(U,OU ). Thus g is nilpotent. Since g /∈ (x) ·
Γ(U,OU ), it maps to a nonzero nilpotent element in the special fiber of MA over A, which
contradicts the integrality of (MA)0.

1.5 Ad hoc proof of the properness of the Hodge–Hitchin morphism

The purpose of this section is to give an alternative proof of the properness of the Hodge–Hitchin
morphism (Theorem 1.3) in the cases we need in this paper (Proposition 1.11). The proof is based
on the application of the following rather general properness criterion and on the knowledge that
the Hitchin and the de Rham–Hitchin morphisms are proper. In some sense, we collate these
two properness statements. On the other hand, this collation does not seem to be immediate;
see Remark 1.10. We are very grateful to Mircea Mustaţă for providing us with a proof of said
criterion. We are also very grateful to Ravi Vakil for pointing out some counterexamples to some
overly optimistic earlier versions of this criterion.

Proposition 1.9 (An ad hoc properness criterion). Let m ◦ f : X → Y → T be morphisms of
schemes. We assume that

(i) X is quasi-compact and quasi-separated, and Y is Noetherian;

(ii) X and Y are integral, and Y is normal;

(iii) f : X → Y is separated, of finite type, surjective and with geometrically connected fibers;

(iv) for every closed point t ∈ T , the morphism ft : Xt → Yt obtained by base change is proper.

Then f is proper.

Proof. Let y → Y be a closed point. The fiber f−1(y) = Xy → y is proper, as it is the fiber
over y of the morphism ft : Xt → Yt, with t := m(y). It follows that it is enough to prove the
proposition when m : Y → T is the identity morphism. We assume that we are in that case.
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We have the commutative diagram

X

j

��

f //

h

**

Y

Z
q //

g
44

W ,

u

OO

where (j, g) is a Nagata–Deligne completion [Con07] of the morphism f , that is, j is an open
and dense immersion and g is proper; we can and do choose Z to be integral; (q, u) is the Stein
factorization [Sta22, 03H0] of g, so that q has geometrically connected fibers and u is finite. Note
that W is integral, that g and q are surjective and that u is finite and surjective.

By [dCHL18, Lemma 4.4.2] (this is stated for the case when W and Y are varieties over an
algebraically closed field; however, the proof also works in our situation, where W is integral
and Y is integral and Noetherian), there is a canonical factorization

u = s ◦ i : W i //W ′
s // Y , (18)

where i is finite radicial (hence a universal monomorphism) and surjective (hence a universal
bijection), and s is finite, surjective, separable [dCHL18, Definition 4.4.1] and generically étale.

Our goal is to prove that u is bijective, that is, that s is bijective. If this were the case, then
we would be done as follows. Since Y is quasi-compact and g is proper, by [Sta22, 04XU], we
have that Z is quasi-compact. Therefore, the closed subspace Z \X is also quasi-compact; thus,
by [Sta22, 005E], if Z \ X is nonempty, then Z \ X has a closed point. Now let y ∈ Y be a
closed point, and let w ∈ W be its unique pre-image via u. Then j

(
f−1(y)

)
is open in q−1(w),

but it is also closed since Xy = f−1(y) is proper over y by assumption. The connectedness of
q−1(w) implies that, set-theoretically, j

(
f−1(y)

)
equals q−1(w); that is, j induces a bijection

f−1(y) → g−1(y). Since this is true for every closed point y ∈ Y and since g is proper, we see
that j induces a bijection between the closed points of Z and those of X. Therefore, Z \X = ∅;
thus Z = X; that is, our contention that f is proper holds true.

We are left with proving that s is bijective. Note that the formation of the canonical factoriza-
tion (18) is compatible with restrictions to open subsets in Y . Since W and Y are integral, Y is
normal, s is finite, and a finite birational morphism from an integral scheme to an integral and
normal scheme is an isomorphism [Sta22, 0AB1], it is enough to show that s is an isomorphism
over a Zariski dense open subset U of Y . The remainder of the proof is dedicated to proving this
assertion.

Note that h is dominant. Since the image Im(h) is constructible and dense, it contains a Zariski
dense open subset V ⊆ W . Then u(W \ V ) is a proper closed subset of Y with open and dense
complement, which we denote by U . Then h is surjective over the open dense u−1(U). It follows
that, in view of proving that s is an isomorphism, it is enough (as seen above) to prove it when h
is surjective, which we assume hereafter.

For any closed point w ∈W , by the connectedness of the fibers of f and the surjectivity of h,
we have that, set-theoretically, h

(
f−1(u(w))

)
is contained in the same connected component

of u−1(u(w)) as w and also contains u−1(u(w)). Therefore, as a scheme, u−1(u(w)) is connected,
and it is finite over the residue field of u(w). By [Sta22, 00KJ], we have that u−1(u(w)), as a set,
is a singleton. We thus have that h−1(w) = f−1(u(w)). As seen above, j

(
h−1(w)

)
is then open

and closed in the connected q−1(w).

As seen above, this implies that j is an isomorphism, and then f = g is proper with geomet-
rically connected fibers. Since geometrically connected schemes are universally connected [Sta22,
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054N], we have that s is separable and universally bijective. By [Sta22, 0154], we have that s is
an isomorphism (recall that we shrunk Y to U). But then s : W ′ → Y is an isomorphism over U ,
and this concludes our proof.

Remark 1.10. The case when f is the normalization of a nodal curve with a point removed
from the domain and m is the identity shows that normality cannot be dropped from the list
of assumptions in Proposition 1.9. The case when X the disjoint union of a line and a line
without the origin, with f the natural morphism to a line with m the identity, shows that the
irreducibility of X cannot be dropped. The case of f the square map Gm,k \ {−1} → Gm,k (say
char(k) 6= 2) and m the identity shows that the connectedness of the fibers cannot be dropped.

Proposition 1.11 (Hodge–Hitchin is proper). Let C/k be a smooth curve over an algebraically
closed field k of characteristic p > 0. Let d ∈ Z, and assume gcd

(
r, dp

)
= 1. The Hodge–Hitchin

morphism hHod

(
C; r, dp

)
(13) is projective.

Proof. We drop some decorations. Since the domain and target are quasi-projective, it is enough
to prove the properness of hHod. Recall (15) that for t = 0 ∈ A1

k, the morphism hHod,0 is the
Hitchin morphism composed with the relative Frobenius FrA (a universal homeomorphism) of
the Hitchin base. In view of (17), for t ∈ Gm,k(k), the morphism hHod,t is isomorphic to the
morphism hdR.

We wish to apply Proposition 1.9 with m ◦ f : X → Y → T given by τ = prA1
k
◦ hHod (13). In

order to do so, we need to verify that the hypotheses (i)–(iv) are met in our setup.

Hypothesis (i) is clear. As to hypothesis (ii), we argue as follows. By Proposition 1.5, we have
that X := MHod is integral and Y := A

(
C(1)

)
×A1

k is integral and normal (in fact nonsingular).

As to hypothesis (iii), we need to establish the surjectivity of f = hHod and the geometric
connectedness of its fibers. The morphism hHod is surjective; in fact, according to the proof of
Lemma 1.4, over the origin 0 ∈ A1

k, the Hitchin morphism is surjective (and proper), and so is
FrA; over Gm,k, the surjectivity follows from the trivialization (17) and the surjectivity of (the
proper) hdR.

Let us argue that the morphism hHod has geometrically connected fibers. It is enough to prove
that for every closed point t ∈ A1

k, the morphism hHod,t has geometrically connected fibers. In
view of the trivialization (17), we need to prove this only for t = 0, where we get the Hitchin
morphism composed with FrA, and for t = 1, where we get the de Rham–Hitchin morphism.
The fibers of the Hitchin morphism are geometrically connected by Zariski’s main theorem (and
therefore so are the fibers of its composition with FrA): the domain and target are nonsingular
integral, and the general fibers are connected (Jacobians of nonsingular connected projective
spectral curves; cf. [BNR89, Proposition 3.6]). As seen in the proof of Lemma 1.4, the fibers of
the de Rham–Hitchin morphism for C in degree dp are isomorphic to the fibers of the Hitchin
morphism for the Frobenius twist C(1) in degree d and are thus also geometrically connected.
This concludes the verification that hypothesis (iii) holds.

The morphisms ft = hHod,t are as follows: for t = 0 (15), the Hitchin morphism com-
posed with FrA; for t = 1 (14), the de Rham–Hitchin morphism; for t 6= 0, isomorphic to
the de Rham–Hitchin morphism in view of the trivialization (17). The Hitchin morphism is
proper [Fal93, Nit91, Sim94b]. The relative Frobenius morphism FrA is finite, hence proper. The
de Rham–Hitchin morphism is proper by [Gro16, Corollary 3.47]. It follows that hypothesis (iv)
holds as well.

We are now in the position to apply Proposition 1.9 and conclude.
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2. Cohomological Simpson correspondence in positive characteristic

Assumptions in § 2. In this section, we place ourselves in the following special case of the setup
in § 1.3: C = C/k is a smooth curve over an algebraically closed field k of positive characteristic
p > 0, the degree d = dp is an integer multiple of the characteristic and gcd(r, d) = 1. At times,
we drop some decorations.

The three main results in this section. We prove three main results, Theorems 2.1, 2.4 and
2.5. Theorem 2.1 is a canonical cohomological version of the Simpson correspondence between
the moduli spaces of Higgs bundles and of connections. The perhaps surprising Theorem 2.4
yields a canonical isomorphism between the cohomology rings of the moduli space of connections
and the moduli space of connections with nilpotent p-curvature tensor. The perhaps even more
surprising, especially when compared with the well-known and evident “additive periodicity”
(31), “p-multiplicative periodicity” Theorem 2.5 involves the Frobenius twists of a curve.

The perverse Leray filtrations we use. The étale cohomology ring H∗
(
MdR(C),Q`

)
is filtered

by the perverse Leray filtration P hdR(C) (6) associated with the de Rham–Hitchin morphism
hdR(C) (14). Similarly, we have the perverse Leray filtration P hDol(C) (6) on H∗

(
MDol(C),Q`

)
associated with the Hitchin morphism hDol(C) (15).

Since the relative Frobenius morphism FrA in (15) is finite, in view of (7), we have that

P hDol(C) = P hHod,0(C) on H∗
(
MDol(C),Q`

)
. (19)

2.1 A cohomological Simpson correspondence in positive characteristic

Recall that the moduli space MdR on the right-hand side of the forthcoming (20) is empty in
characteristic zero. The MDol on the left-hand side is nonempty and lifts to characteristic zero.

Theorem 2.1 (Cohomological Simpson correspondence, char(k) = p > 0, I). Let C/k and
gcd(r, d = dp) = 1 be as in the beginning of § 2 above.

There is a natural filtered isomorphism of cohomology rings(
H∗
(
MDol

(
C; r, dp

)
,Q`
)
, P hDol

)
'
(
H∗
(
MdR(C; r, dp),Q`

)
, P hdR

)
. (20)

Proof. We drop some decorations. Recall that the Hodge–Hitchin morphism at t = 1 ∈ A1
k

coincides with the de Rham–Hitchin morphism, that is, hHod,1 = hdR(C) (14), and that the
Hodge–Hitchin morphism at t = 0 ∈ A1

k coincides with the composition of FrA ◦ hDol (15). We
apply the formalism of vanishing and nearby cycles recalled in § 1.2 to the two morphisms

τ : MHod(C)
hHod // A

(
C(1)

)
× A1

k

π:=pr2 // A1
k ,

σ : MdR(C)× A1
k

hdR×IdA1
k // A

(
C(1)

)
× A1

k

π:=pr2 // A1
k .

Note that the morphism τ and σ share the second link π.

We take S to be a strict Henselianization of the spectrum of the completion of the local
ring of the point i : 0 → A1

k. By Lemma 1.4 and Proposition 1.5, the morphisms σ and τ are
smooth. In particular, φτ

(
Q`
)

= 0 and φσ
(
Q`
)

= 0 (cf. Fact 1.2), so that we have ψτ
(
Q`
)

= Q`
on MDol(C) = MHod,0(C) and ψσ

(
Q`
)

= Q` on MdR(C).

By Proposition 1.3, the morphism hHod is proper. Since the de Rham–Hitchin morphism hdR
is proper, the morphism hdR × IdA1

k
is proper. In particular, we have natural isomorphisms
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in Db
c

(
A
(
C(1)

)
× 0,Q`

)
stemming from the proper base change isomorphisms (i∗h∗ = h∗i

∗,
ψh∗ = h∗ψ)

i∗hHod∗Q` ' hHod,0∗Q` , i∗
(
hdR × IdA1

k

)
∗Q` ' hdR∗Q` ,

hHod,0∗Q` ' ψπ
(
(hHod|Gm,k)∗Q`

)
, hdR∗Q` ' ψπ

(
hdR × IdGm,k

)
∗Q` .

(21)

By the trivializing isomorphism (17), we have a natural isomorphism between the two terms
of type ψπ in (21). We thus have a natural isomorphism in Db

c

(
A
(
C(1)

))
hHod,0∗Q` ' hdR∗Q` . (22)

Ignoring the ring structure, the statement in cohomology follows by taking cohomology
in (22); the filtered refinement follows from (19).

As to the ring structure, we argue as follows.

Recall that to obtain the isomorphism (22), we need to pass through three types of morphisms:
firstly, the morphisms induced by i∗ → ψ; secondly, the morphisms induced by the base change
morphism; and lastly, the morphism induced by the trivializing isomorphism (17). We need to
show that these three types of morphisms all preserve cup products.

We now consider the first type. Note that the vanishing cycle functor preserves cup products
(see, for example, [Ill94, § 4.3]). Upon taking cohomology on A1, the morphism i∗ → ψ induces
the specialization morphism on stalks as defined in [Sta22, 0GJ2]. By the description of the
specialization morphism in terms of pulling back sections via j̄∗ (8) as in [Sta22, 0GJ3], we see
that the morphism i∗ → ψ preserves cup products.

To show that the second type of morphisms preserve cup products, we are reduced to showing
that a base change morphism of the form i∗h∗ → h∗i

∗ preserves cup products. We can write the
base change morphism as the composition i∗h∗ → i∗h∗i∗i

∗ ∼−→ i∗i∗h∗i
∗ → h∗i

∗, where the first
morphism is induced by the unit morphism id→ i∗i

∗ and the last by the counit i∗i∗ → id. It is
easy to check that both preserve cup products.

Finally, the trivializing isomorphism (17) is induced by an actual isomorphism (16) of vari-
eties, and it does preserve cup products.

Remark 2.2 (Weights). If the curve C/k is obtained by extensions of scalars from a curve over
a finite field, then the isomorphism (20) is compatible with the Frobenius weights (see [Del80,
Theorem 6.1.13]). The same is also true for the isomorphisms in the forthcoming Theorems 2.4,
2.5, 3.6, 3.9, 3.11, 3.12 and 3.13.

2.2 Cohomology ring of the space of connections with nilpotent p-curvature

The following Theorem 2.4 is a somewhat unexpected and surprising consequence of Theorem 2.1.
This is because its analog (25) for the Dolbeault moduli space is well known to experts and proved
using the Gm-equivariance and properness of the Hitchin morphism, whereas in the de Rham
case, there is no natural nontrivial Gm-action. In particular, even ignoring the filtrations and the
ring structure, there seems to be no clear a priori reason why the isomorphism (24) should hold
additively.

The fiber NdR. Let C/k and gcd
(
r, d = dp

)
= 1 be as in § 2. Let NdR

(
C; r, dp

)
be the fiber over

the origin io(1) : o(1)→A
(
C(1); r

)
of the de Rham–Hitchin morphism hdR(C; r, d) (14). This is

the moduli space of those stable connections of rank r and degree d with nilpotent p-curvature
Higgs field. Let us drop r and d from the notation.
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The filtration PNdR
on H∗

(
NdR,Q`

)
. The inclusion of this fiber induces the cohomology ring

homomorphism i∗o(1) : H∗(MdR) → H∗(NdR). The perverse t-structure on A
(
C(1)

)
induces a fil-

tration P on the cohomology of the fiber M̃dR of hdR over the strict localization õ(1) of o(1).

By proper base change, restriction induces a cohomology ring isomorphism H∗
(
M̃dR,Q`

)
'

H∗
(
NdR,Q`

)
, and, by transport of structure, the latter cohomology group inherits the filtration,

denoted by PNdR
, from the former (not to be confused with the perverse Leray filtration in-

duced by the morphism NdR → o(1), which is trivial-shifted by the degree in each cohomological
degree). We thus have that restriction induces a filtered morphisms of cohomology rings

i∗o(1) :
(
H∗
(
MdR

(
C; r, dp

)
,Q`
)
, P hdR

)
//
(
H∗
(
NdR

(
C; r, dp

)
,Q`
)
, PNdR

)
. (23)

Remark 2.3. The decomposition theorem [BBD82, Theorem 6.2.5] (stated over C, but valid over
any algebraically closed ground field) and the construction of PNdR

imply that one can split the
perverse filtrations P hdR and PNdR

compatibly with the restriction morphism i∗o(1); that is, this
latter is a direct sum morphism for the two filtrations split into direct sums. In particular, if i∗o(1)
is an isomorphism, then it is a filtered isomorphism. Recall that isomorphisms that are filtered
morphisms may fail to be filtered isomorphisms. By replacing “dR” with “Dol,” we see that the
same holds for P hDol and PNDol

, where NDol is the fiber over o ∈ A(C) of the Hitchin morphism
hDol : MDol(C)→ A(C).

Recall our assumptions from § 2: C/k, char(k) = p > 0 and gcd
(
r, d = dp

)
= 1.

Theorem 2.4 (The cohomology ring of NdR). The morphism (23) is a filtered isomorphism of
cohomology rings

i∗o(1) :
(
H∗
(
MdR

(
C; r, dp

)
,Q`
)
, P hdR

) ' //
(
H∗
(
NdR

(
C; r, dp

)
,Q`
)
, PNdR

)
. (24)

Proof. We drop many decorations. We start by proving the forthcoming and seemingly well-
known (cf., for example, [Hei15, Theorem 1]) (25), the proof of which remains valid without
restrictions on rank, degree or characteristic of the ground field.

Let NDol be the fiber of the Hitchin morphism hDol : MDol → A(C) over the origin io : o →
A(C). The complex hDol∗Q`MDol

is Gm-equivariant for the natural Gm-action on A(C) (cf.
the paragraph following (15)). Since hDol is proper, proper base change (pbc), coupled with
[dCMM18, Lemma 4.2], implies that the adjunction morphism

hDol∗Q`MDol
// io∗i

∗
ohDol∗Q`MDol

'
pbc
// io∗hDol∗Q`NDol

induces an isomorphism. By taking cohomology, this morphism induces the restriction morphism
in cohomology, which is thus an isomorphism of cohomology rings

i∗o :
(
H∗
(
MDol,Q`

)
, P hDol

) ' //
(
H∗
(
NDol,Q`

)
, PNDol

)
. (25)

In view of Remark 2.3, this is also a filtered isomorphism.

Recall diagrams (14) and (15). Let io(1) : o(1) → A
(
C(1)

)
be the origin, so that NdR is the

corresponding fiber of the de Rham–Hitchin morphism hdR : MdR → A
(
C(1)

)
. Let Fr−1A(C)(o(1))

be the fiber of FrA(C) over o(1); it is supported at the origin o ∈ A(C). The fiber h−1Dol(o) = NDol is

a closed subscheme of the fiber [NDol] := h−1Dol

(
Fr−1A(C)(o(1))

)
= h−1Hod,0(o(1)), and these two fibers

have the same reduced structure, hence the same cohomology ring (more precisely, identified
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by pull-back). In view of the isomorphism (25), we have isomorphisms of cohomology rings
H∗(MDol,Q`) ' H∗

(
[NDol],Q`

)
' H∗

(
NDol,Q`

)
.

By applying the adjunction morphism of functors Id → io(1)∗i
∗
o(1) to the isomorphism (22),

which we recall induces an isomorphism of cohomology rings, we obtain the following commu-
tative diagram of morphisms of cohomology rings, where the vertical arrows are the restriction
morphisms of cohomology rings, and with the indicated three isomorphisms of cohomology rings:

H∗
(
MDol,Q`

) ' //

'
��

H∗
(
MdR,Q`

)
��

H∗
(
[NDol],Q`

) ' // H∗
(
NdR,Q`

)
.

It follows that the fourth unmarked vertical arrow on the right-hand side, which is the restriction
morphism i∗o(1) in (24), is an isomorphism of cohomology rings.

Finally, since we now know that i∗o(1) is an isomorphism and a filtered morphism (23), Re-

mark 2.3 implies that i∗o(1) is a filtered isomorphism, as predicated in (24).

2.3 Cohomology ring of moduli spaces for a curve and its Frobenius twist

Note that in the construction of the Frobenius twist C(1) := C×k k of a k-scheme, we can replace
the field automorphism frk : k

∼→ k, a 7→ ap with any of its integer powers and obtain, for every
integer n ∈ Z, the nth iterated Frobenius twist C(n) of C. The curve C and all its Frobenius
twists have the same genus.

The following “multiplicative periodicity” result, involving the characteristic p as a factor
and the Frobenius twists of C, is a simple, yet remarkable, consequence of Theorems 2.1 and 2.4
and [Gro16, Corollary 3.28]. It allows one to prove the forthcoming “multiplicative periodicity”
result Theorem 3.11, involving only the curve C and not its Frobenius twists.

Recall our assumptions from § 2: C/k, char(k) = p > 0 and gcd
(
r, d = dp

)
= 1.

Theorem 2.5 (p-Multiplicative periodicity with Frobenius twists). Let d = d̃pm, with m > 0
maximal. We have canonical isomorphisms of cohomology rings

H∗
(
MDol

(
C; r, d̃pm

)
,Q`
) ∼= H∗

(
MDol

(
C(m); r, d̃

)
,Q`
)
,

H∗
(
MDol

(
C(−m); r, d̃pm

)
,Q`
) ∼= H∗

(
MDol

(
C; r, d̃

)
,Q`
)

;
(26)

we have the analogous isomorphisms when we replace d̃ with d.

These isomorphisms are filtered isomorphisms for the respective perverse Leray filtrations.

Proof. We prove the statements for d̃. The same line of argument applies to d.

Since C can be any projective nonsingular curve of a fixed genus, by using Frobenius twists,
we see that the two assertions are equivalent to each other. It is enough to prove the one in the
top row. The case m = 0 is trivial. A simple induction on m shows that it is enough to prove
the top row when m = 1.

We use the notation in the proof of Theorem 2.4. We recall that the two morphisms

hDol : MDol

(
C(1); r, d

)
→ A

(
C(1); r

)
and hdR : MdR

(
C; r, dp

)
→ A

(
C(1); r

)
are étale-locally equivalent over their common target A

(
C(1); r

)
; see [Gro16, Corollary 3.28,

Lemma 3.46]. This immediately implies that the two fibers over the origin NDol

(
C(1); r, d

)
and

622



A cohomological nonabelian Hodge theorem in char. p

NdR

(
C, dp

)
are isomorphic as k-varieties. As in the proof of [Gro16, Corollary 3.45], we choose

a distinguished isomorphism between hDol and hdR over an étale neighborhood U over the origin
of A

(
C(1), r

)
. By taking the fiber of this isomorphism over the origin of A

(
C(1), r

)
, we obtain

a cohomology ring isomorphism ν : H∗(NDol)
∼−→ H∗(NdR). By the very construction of the

filtrations PNDol
and PNdR

in § 2.2, the isomorphism ν is filtered for PNDol
and PNdR

.

By invoking the appropriate results in parentheses, we have the following chain of canonical
ring filtered isomorphisms (filtrations are omitted for typographical reasons):

H∗
(
MDol

(
C(1), d̃

)
,Q`
) (25)∼= H∗

(
NDol

(
C(1), d̃

)
,Q`
)

[Gro16, §§ 3.28 and 3.46]∼= H∗
(
NdR

(
C, d̃p

)
,Q`
)

(24)∼= H∗
(
MdR

(
C, d̃p

)
,Q`
)

(20)∼= H∗
(
MDol

(
C, d̃p

)
,Q`
)
.

This proves the top row in (26).

3. Cohomological equivalence of Hodge moduli spaces of curves

In § 2, we worked with a fixed curve C/k over an algebraically closed field k of characteristic
p > 0, and, under certain conditions on r, d and p, we have used the family τ : MHod(C)→ A1

k to
relate (the cohomology of) MDol and MdR in the same degree (Theorem 2.1). We have also been
able to relate MDol(C) and MDol

(
C(−n)) when the degrees differ by a factor pn (p-multiplicative

periodicity with Frobenius twists, Theorem 2.5).

In this section, we build on these results and, under certain conditions on r, d and p, we relate
(the cohomology of) MDol with fixed degree for different curves of the same genus (Theorem 3.9),
and with different degrees (Theorem 3.11) differing by a factor power of p for the same curve
(hence for different curves of the same genus).

This latter result is then lifted to characteristic zero, where, coupled with the Dirichlet prime
number theorem, it relates (the cohomology of) MDol in different degrees (Theorem 3.12) for
a curve (hence for different curves). The existence of such an isomorphism in cohomology is
known, but the compatibility of the perverse filtrations is new.

This result in characteristic zero is then specialized back to characteristic p > r (Theo-
rem 3.13), where it is new.

The main technical tool employed in this section, which has not been used in proving the
results in § 2, is part of the compactification/specialization package developed in [dCa22] and
generalized in part in [dCZ22]. We summarize what we need in Proposition 3.4. In order to have
access to this package, we need to establish the smoothness (Proposition 3.1) and the properness
(Proposition 3.3) of the morphisms we employ.

3.1 Relative moduli spaces: Smoothness and properness

In this subsection, we prove Proposition 3.1, namely, the smoothness of the Hodge moduli space
MHod(C/B) for a projective smooth family C/B of curves over a nonsingular base curve B.
We also prove Proposition 3.3, namely, the properness of the Hodge–Hitchin morphism for said
family. These two results are the relative version over a base curve of Theorems 1.5 and 1.11.
They are used in the proof of Theorem 3.9. In fact, we only need the specialization of these two
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results to the case of the Dolbeault moduli space, where the properness of the Hitchin morphism
is well known, while the smoothness assertion seems new, at least in positive characteristic.

Proposition 3.1 (Smoothness of moduli over a base). Let C/B be a smooth curve over a
reduced base B.

The following morphisms are smooth surjective and quasi-projective:

(i) αB : MHod

(
C/B, r, dp

)
→ B, where gcd(r, d) = 1

(ii) βB : MDol(C/B, r, d)→ 0B ∼= B, where gcd(r, d) = 1

(iii) τB : MHod(C/B, r, d) → A1
B, where J is an algebraically closed field of characteristic p > 0

and gcd
(
r, dp

)
= 1

(iv) γB : MdR(C/B, r, d) → 1B ∼= B, where J is an algebraically closed field of characteristic
p > 0 and gcd

(
r, dp

)
= 1.

Moreover, if B is integral, then the domains of these morphisms are integral; if B is nonsingular,
then the domains are nonsingular.

Proof. The surjectivity can be checked after base change via geometric points b → B, in which
case it follows from Proposition 1.5. The quasi-projectivity follows from the fact that the moduli
spaces are quasi-projective over B. Note that parts (iii) and (iv) fail if we do not assume that d
is a multiple of p, for then MdR is empty. Part (i) implies parts (ii) and (iv) via the base changes
0B, 1B → A1

B. Part (i) coupled with the flatness of the morphisms τb at the geometric points of B
(Proposition 1.5) implies part (iii) in view of [GD66, 11.3.11], which states that a B-morphism
f : X → Y is flat if X is flat over B and the base change of f to each point b ∈ B is flat.

It follows that we only need to prove part (i). The proof of part (i) follows the same thread
as the proof of the smoothness in Theorem 1.5. As the proof we are about to give shows, we are
really implicitly proving part (ii) as we explicitly prove part (i).

Proof of part (i). Since the fibers of αB are smooth (Proposition 1.5), it is enough to prove
the flatness of the locally finitely presented morphism αB. By the valuative criterion of flatness
[GD66, 11.8.1], we can replace our B with the spectrum A of a DVR mapping to B. The proof
that αA is flat is very similar to the proof of Proposition 1.5. Note that in order to use the
valuative criterion of flatness, we need the assumption that B is reduced.

In the present context, the only point that requires a different proof is the analog of Claim 1.6
in the proof of Proposition 1.5. It is enough to exhibit a Higgs bundle on the curve XA/A over the
DVR A. In order to conclude the proof of part (i), it is thus sufficient to prove the forthcoming
Claim 3.2. Let a and α be the closed and open points of A.

Claim 3.2. We have Mα ∩Ma 6= ∅.

We have the Beauville–Narasimhan–Ramanan (BNR) correspondence [BNR89, Proposi-
tion 3.6] for smooth spectral curves: (a line bundle of the appropriate degree on a smooth degree r
spectral curve S/A) 7→ (a stable Higgs bundle of the appropriate degree on the curve XA/A).

If Mα and Ma were disjoint, then they would stay disjoint after any base change Z → A
covering a. It is thus enough to show that we can extend any line bundle on any smooth spectral
curve Sa over Ca to a line bundle on a smooth spectral curve SA over CA, possibly after an étale
base change Z → A covering a.

Let u : S → A(CA/A, ωCA/A) be the universal spectral curve of degree r for the family CA/A.
Since the universal spectral curve is flat over the Hitchin base and the Hitchin base is flat
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over A, the universal curve is flat over A. By using the Jacobian criterion in connection with the
polynomial expression for the equations of spectral curves, we see that S/A, being flat, is smooth.
Then, since for every geometric point a on A, the fiber Sa is nonsingular integral, we see that S is
integral. The morphism u is not smooth, but since general spectral curves are nonsingular—this
is true over both points a, α ∈ A—there is an open and dense subset U ⊂ A(CA/A, ωCA/A)
over which u is smooth and such that the resulting morphism U → A is smooth and surjective.
Moreover, the geometric fibers of S over U are nonsingular integral. By [Kle05, Theorem 9.4.8,
Proposition 9.5.19], the Picard scheme PicSU/U exists as a smooth group scheme over U that
is separated and locally of finite type over U . Note that PicSU /U is smooth and surjective. In
particular, PicSU /A is smooth and surjective. By [Sta22, 054L], étale-locally over a ∈ A, the
morphism PicSU/U → A admits a section. Claim 3.2 is proved; part (i) and thus parts (ii), (iii)
and (iv) follow.

Finally, since αB, βB and γB are smooth, their domains are nonsingular. By Lemmata 1.4
and 1.5, the fibers of αB, βB and γB are integral, in particular connected. Since moreover their
images are connected, their domains must also be connected, thus integral.

Proposition 3.3 (Properness of Hodge–Hitchin over a base). Let C/B be a smooth curve over
a Noetherian integral and normal base B that is of finite type over an algebraically closed field of
characteristic p > 0. Assume that d = dp is a multiple of p and gcd

(
r, d
)

= 1. The Hodge–Hitchin
morphism hHod (13) is proper, in fact projective.

Proof. Since the Hodge–Hitchin morphism is quasi-projective, it is enough to prove that it is
proper. To this end, it is enough to verify the hypotheses (i)–(iv) in the properness criterion 1.9,
as has been done in the proof of Proposition 1.11. The verification is completely analogous.

3.2 Compactifications, vanishing cycles and specialization

Recall that if a family is not proper over a Henselian DVR (or, more geometrically, over a smooth
curve), then the specialization morphism (9) is not necessarily defined, and, moreover, smoothness
of the family alone is not sufficient in general to infer the vanishing we prove next. Such issues
have been tackled over the complex numbers in [dCa22]. The discussion [dCZ22, § 5.1] shows
that under favorable circumstances, we can apply the results in [dCa22], originally proved over
the complex numbers, to a situation over an algebraically closed field, and over a DVR. Based
on this, we state and prove the following.

Proposition 3.4. (i) Let things be as in § 2: C/k is a smooth curve over an algebraically closed
field k, char(k) = p > 0 and gcd(r, d = dp) = 1. Let φτ be the vanishing cycle functor as-
sociated with the morphism τHod : MHod → A1

k (13) after base change S → A1
k from a strict

Henselianization of A1
k at the origin. We have the identity φτ

(
τ∗Q`

)
= 0 for the vanishing cycles.

(ii) Let C/B be a smooth curve, where B is (the spectrum of ) a strictly Henselian DVR. Assume
gcd(r, d) = 1, and when the DVR is of mixed characteristic (0, p > 0), also assume p > r. The
specialization morphism

H∗
(
MDol(Cs; r, d),Q`

) sp // H∗
(
MDol

(
Cη; r, d

)
,Q`
)

(27)

is defined; it is a cohomology ring isomorphism and a filtered isomorphism for the perverse Leray
filtrations induced by the respective Hitchin morphisms (12).

Proof. According to the discussion [dCZ22, § 5.1], we can apply [dCa22, Lemma 4.3.3] (respec-
tively, [dCa22, Theorem 4.4.2]) to the present situation (i) (respectively, (ii)), as long as the
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morphism MHod(C/k) → A1
k (respectively, MDol(C/B) → B) is smooth and the moduli space

universally corepresents the appropriate functor. The smoothness has been proved in Propo-
sition 3.1(iii) (respectively, Proposition 3.1(ii)), and, in view of the fact that stability equals
semistability in the coprime case, the universal corepresentability in the coprime case is due to
A. Langer [Lan14, Theorem 1.1]. This implies the desired conclusion (i) (respectively, (ii)).

Remark 3.5. If we replace the Dolbeault moduli spaces in Theorems 3.9, 3.12 and 3.13 with the
moduli space of stable L-twisted Higgs bundles of degree coprime to the rank, where L either
is the canonical bundle or satisfies degL > degωC , then we still have the conclusion analogous
to that in Proposition 3.4(ii). This is because the analog of Proposition 3.1(ii) holds by the
coprimality condition, with virtually the same proof.

3.3 Second proof of Theorem 2.1

In this section, we use Proposition 3.4 to give a second and simpler proof of Theorem 2.1. In
fact, this proof yields an even stronger statement. On the other hand, the proof of Theorem 2.1
is more self-contained and, importantly, brings to the front the isomorphism (22), which plays
a key role in the proof of Theorem 2.4, which is key to proving the p-multiplicative periodicity
with Frobenius twists Theorem 2.5, which in turn plays a repeated role henceforth.

Recall our assumptions from § 2: C/k, char(k) = p > 0 and gcd
(
r, d = dp

)
= 1.

Theorem 3.6 (Cohomological Simpson correspondence, char(k) = p > 0, II). The inclusions
i0 : MDol →MHod and i1 : MdR →MHod induce filtered isomorphisms of cohomology rings

H∗
(
MDol

(
C; r, dp

)
,Q`
)

H∗
(
MHod

(
C; r, dp

)
,Q`
)i∗0

'
oo

'
i∗1 // H∗

(
MdR

(
C; r, dp

)
,Q`
)

(28)

for the perverse Leray filtrations associated with the Hitchin, the Hodge–Hitchin and the de
Rham–Hitchin morphism, respectively.

Proof. By virtue of the smoothness of τHod (Theorem 1.5) and of the properness of the Hodge–
Hitchin morphism (Theorem 1.11), we can apply Proposition 3.4, and we have φτ (τ∗Q`) = 0.

Since φ̃τ : = φτ [1] is t-exact for the perverse t-structure, we have the identity

φ̃τ
(
pH•
(
τ∗Q`

))
= pH•

(
φ̃τ
(
τ∗Q`

))
= 0

relating perverse cohomology sheaves. The local trivialization (16) implies that the restriction
pH•
(
τ∗Q`

)
|Gm,k

is isomorphic to L •[1], where L • is a suitably constant sheaf on Gm,k.

By combining the two assertions of the previous paragraph with A. Beilinson’s description of
perverse sheaves via the vanishing cycle functor (see [Bei87, Proposition 3.1] or [dCM09, Theo-
rem 5.7.7], for example), we see that the perverse cohomology sheaves pH•

(
τ∗Q`

)
are constant

sheaves shifted by [1].

A simple induction using the perverse truncation distinguished triangles, coupled with the
fact that H•6=0

(
A1
k,Q`

)
= 0, shows that the complex τ∗Q` splits as the direct sum of its shifted

perverse cohomology sheaves and thus, because they are shifts of constant sheaves, as the direct
sum ⊕i>0R

iτ∗Q`[−i] of its shifted direct image sheaves, which, moreover, are constant sheaves
of some rank.

The unfiltered assertion (28) follows. For the filtered version, we argue similarly, replacing τ∗Q`
with the sequence of complexes pr2∗

pτ6•hHod∗Q` (cf. (13)).

Remark 3.7. We can also prove Theorem 3.6, without using Beilinson’s glueing of perverse
sheaves, as follows.
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Since φτ
(
τ∗Q`

)
= 0, we have that Riτ∗Q` is locally constant for each i. We also know that

Riτ∗Q` is constant over Gm. Therefore, the local system Riτ∗Q` is determined by a continuous
representation π1

(
A1
k, 1
)

of the étale fundamental group into GL
(
H i
(
MdR,Q`

))
such that the

composition with π1(Gm, 1) → π1
(
A1
k, 1
)

is trivial. Since the morphism π1(Gm, 1) → π1
(
A1
k, 1
)

is surjective [Sta22, 0BQI], the representation π1
(
A1
k, 1
)
→ GL

(
H i
(
MdR,Q`

))
is also trivial, so

that Riτ∗Q` is constant over A1
k.

Remark 3.8. If we disregard the filtrations, the ring isomorphisms (28) lift to Voevodsky mo-
tives: one combines the results [HP21, Theorem B1, Corollary B2 and the method of proof of
Theorem 4.2] with the setup and smoothness results of this paper.

3.4 Cohomology ring of Dolbeault moduli spaces for two distinct curves

The goal of this subsection is to prove Theorem 3.9. Over the complex numbers, this theorem
is an immediate consequence of the Simpson correspondence, for the two Dolbeault spaces have
isomorphic Betti moduli spaces.

Theorem 3.9 (Different curves, same degree). Let Ci/k be two smooth curves over an alge-
braically closed field. Assume that the rank and degree are coprime, gcd(r, d) = 1 (we do not
assume that d is a multiple of p). There is a noncanonical isomorphism of cohomology rings that
is a filtered isomorphism for the perverse Leray filtrations stemming from the respective Hitchin
morphism

H∗
(
MDol(C1; r, d),Q`

) '
(∗)
// H∗

(
MDol(C2; r, d),Q`

)
. (29)

If, in addition, the ground field has characteristic p > 0 and d = dp is an integer multiple of
p, then we have a commutative diagram of isomorphisms of cohomology rings that are filtered
isomorphisms for the respective perverse Leray filtrations:

H∗
(
MDol

(
C1; r, dp

)
,Q`
) '

(∗)
//

'
��

H∗
(
MDol

(
C2; r, dp

)
,Q`
)

'
��

H∗
(
MdR

(
C1; r, dp

)
,Q`
) ' // H∗

(
MdR

(
C2; r, dp

)
,Q`
)
.

(30)

Proof. The second statement (30) follows easily from the first one (29): we take the vertical
isomorphisms in (29) to be the canonical ones of Theorem 2.1; we take (∗) to be that in (29); we
close the diagram in the evident fashion.

We now construct the isomorphism (∗) in (29).

Let g be the genus of the curves C1, C2. If g = 0, then the Dolbeault moduli spaces in question
are a single point for r = 1 and empty for r > 1 [Nit91, § 7]; in either case, there is nothing left to
prove. If g = 1, then we argue as in the forthcoming g > 2 case, by using the irreducible moduli
space of g = 1 curves with level structure [DR73, Corollary 5.6]. We may thus assume g > 2.

By the irreducibility assertion [DM69, § 3] for the Hilbert scheme of tri-canonically embedded
curves of genus g > 2, we can find a projective and smooth family C/B of genus g curves, with B
a nonsingular connected curve and with two closed fibers Xbi ' Ci, where bi ∈ B for i = 1, 2.

We conclude by taking (∗) to be (27) as in Proposition 3.4(ii) (triangulate b1 and b2 through
a geometric generic point of B), which we can use in view of the smoothness assertion in Theo-
rem 3.1(ii).
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Remark 3.10. The conclusion (29) in Theorem 3.9 holds, with the same proof, in the setup
of Remark 3.5. The key points are the properness of the Hitchin morphism in families [Fal93,
Nit91, Sim94b] and the smoothness of the Dolbeault moduli space (the same proof as that of
Proposition 3.1(ii) goes through).

3.5 p-Multiplicativity without Frobenius twist

The well-known additive periodicity of Dolbeault moduli spaces. Let C be a connected nonsin-
gular projective curve over an algebraically closed field k. For arbitrary degree rank r and d ∈ Z,
there is a canonical isomorphism of cohomology rings for every n ∈ Z

H∗
(
MDol(C; r, d)

)
' H∗

(
MDol(C; r, d+ rn)

)
. (31)

This follows from the fact that the choice of any degree n line bundle L on C induces, by the
assignment (E, φ) 7→ (E⊗L, 1L⊗φ), an isomorphism of Dolbeault moduli spaces that commutes
with the Hitchin morphisms, hence induces a filtered isomorphism of cohomology rings as in (31).
Since L can be made to vary in the connected Picn(C), the latter isomorphism is independent
of the choice of L ∈ Picn(C).

We have the following consequence of Theorems 2.5 and 3.9 that came as a surprise to us.
Note the very different nature of (32), that is, its expressing a periodicity under multiplication
of the degree (coprime to the rank) by powers of p, when compared with (31), which expresses
a periodicity when adding multiples of the rank to the degree.

The following result is concerned with the curve C only and should be compared with Theo-
rem 2.5, which is concerned with a curve C and with its Frobenius twist C(1).

Theorem 3.11 (p-Multiplicative periodicity without Frobenius twists). Let C/k be a smooth
curve over an algebraically closed field k of characteristic p > 0. Assume gcd(r, d) = 1 (we do
not assume that d is a multiple of p).

For every m ∈ Z>0, there is a noncanonical isomorphism of cohomology rings

H∗
(
MDol(C; r, d)

)
' H∗

(
MDol

(
C; r, dpm

))
(32)

that is a filtered isomorphism for the perverse Leray filtrations associated with the Hitchin
morphism MDol(C)→ A(C).

Proof. Combine Theorems 2.5 and 3.9, the latter with C1 := C and C2 := C(1).

3.6 Cohomology ring of Dolbeault moduli spaces for two distinct degrees

In this section, we prove Theorems 3.12 and 3.13.

Theorem 3.12 (Same curve, different degrees; char(k) = 0). Let C/k be a smooth curve over
an algebraically closed field of characteristic zero. Fix the positive integer r (the rank). Let d, d′

(the degrees) be any two integers coprime to r. There is a noncanonical ring isomorphism

H∗
(
MDol(C; r, d),Q`

) ∼= H∗
(
MDol(C; r, d′),Q`

)
(33)

that is a filtered isomorphism for the perverse Leray filtrations associated with the respective
Hitchin morphisms.

Proof. Let a ∈ Z be such that da ≡ d′ mod r. By the Dirichlet prime number theorem, there
are infinitely many prime congruent to a modulo r. Choose any such prime p such that p > r
and p 6= ` (` as in Q`).
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By the r-periodicity (31) and the p-multiplicativity (32), the statement of the theorem is
true if we replace the characteristic zero algebraically closed ground field with any algebraically
closed ground field of characteristic p.

By the Lefschetz principle, we can replace the given ground field with any algebraically closed
field of characteristic zero, such as the forthcoming κ(α). In view of the isomorphisms (29), we
can also replace the given curve C with any other curve of the same genus over κ(α), such as
the forthcoming X

κ(α)
.

Let A be the spectrum of a complete DVR of characteristic zero with algebraically closed
residue field k of characteristic p. The content of this paragraph, namely that curves in positive
characteristic can be lifted to characteristic zero, is standard and well known. For example, see
[Obu12, Proposition 2.1]; see also [Mat11, Definition 4 and Theorem 5] and the remainder of
that blog post. There is a smooth curve X/A, with closed special fiber Xa any prechosen integral
nonsingular projective curve of genus g over κ(a), and with generic geometric fiber X

κ(α)
a curve

of the same kind, but over the algebraically closed field κ(α) given by any chosen algebraic closure
of the residue field κ(α) of the generic point α ∈ A.

By combining the characteristic p version of (33) with Proposition 3.4(ii), we get the follow-
ing chain of cohomology ring isomorphisms, which are filtered isomorphisms for the respective
perverse Leray filtrations (we drop the rank r):

H∗
(
MDol

(
X
κ(α)

; d
)) ∼= H∗

(
MDol(Xa; d)

) ∼= H∗
(
MDol(Xa; d

′)
) ∼= H∗

(
MDol

(
X
κ(α)

; d′
))
.

The theorem is thus proved.

Note that in the proof of Theorem 3.12 above, one can avoid using Proposition 3.4(ii) by
spreading out C instead of lifting a chosen Xa. However, we use the lifting of Xa and Proposi-
tion 3.4(ii) in the proof of Theorem 3.13 below.

Theorem 3.13 (Same curve, different degrees; char(k) = p > r). Let (r, d, d′) be such that
gcd(r, d) = gcd(r, d′) = 1. Let C/k be a smooth curve over an algebraically closed field k of
characteristic p > r. There is a noncanonical ring isomorphism

H∗
(
MDol(C, r, d),Q`

) ∼= H∗
(
MDol(C, r, d

′),Q`
)
, (34)

which is a filtered isomorphism for the perverse Leray filtrations associated with the respective
Hitchin morphisms.

Proof. Let X/A be a lift of C to characteristic zero as in the proof of Theorem 3.12. The
desired conclusion in positive characteristic p follows by combining the analogous result (33) in
characteristic zero with the specialization isomorphism (27).

Note that Theorem 3.13 does not follow immediately by combining the p-multiplicativity (4)
with the elementary periodicity (31) with respect to the rank. For example, take p = 3, r = 13,
d′ = 1, d = 15.

Remark 3.14. One can combine the results of Theorem 3.9 with those of Theorems 3.12 and 3.13
and obtain the evident “different curves, different degrees” version (omitted).

Remark 3.15 (Earlier results). (i) Point counts over finite fields, coupled with smoothness and
purity arguments, give an equality of Betti numbers for the two sides of (33) and (34) over an
algebraically closed ground field; see [GWZ20, Mel20, MS20, Sch16]. While such methods imply
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the existence of an additive isomorphism preserving the perverse filtration, they do not seem to
yield information on cup products.

(ii) Let the ground field be the complex numbers. If we replace MDol with the Betti moduli
space MB, then a well-known Galois-conjugation method yields a canonical isomorphism of
cohomology rings analogous to (33). By nonabelian Hodge theory for gcd(r, d) = 1 over the
complex numbers [HT04], we have cohomology ring isomorphisms H∗(MB) ' H∗(MDol), so that
we obtain a canonical cohomology ring isomorphism as in (33) but different from it. We are
unaware of an evident reason why this canonical isomorphism should be compatible with the
perverse filtration, the way (33) is. Added in revision: this issue is settled in the positive in
[dCMSZ21].

(iii) Over a ground field of positive characteristic, given the lack of a Betti moduli space coun-
terpart, the existence of a multiplicative (34) is new, and so is its compatibility with the perverse
filtrations associated with the Hitchin morphisms.
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